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ABSTRACT

This report describes a digital system for studying the zero-
crossing intervals of random processes. Probabilities and probability
densities defined by the zero-crossing points of various Gaussian
processes are presented. Probabilities and probability densities de-
fined by the zero-crossing points of a random process consisting of
a sine wave plus a Gaussian process are also presented. Finally,
probabilities and probability densities defined by the stationary points
of a random process consisting of a sine wave plus a Gaussian pro-
cessarepresented. Atpresent noneof the probabilities or probability
densities can be derived explicitly by analytical methods. The stan-
dard deviations associated with the probability densities are also
presented. In the case of the Gaussian processes the correlation co-
efficients for two successive intervals are presented. The first mo-
mentsassociated withthe probability densities are compared with the
exact theoretical values. All the other experimental results are com-
pared with theoretical approximations. The statistical dependence
between the ith zero-crossing interval and the (i+n)th zero-crossing

interval is investigated.




I. INTRODUCTION

In many branches of science and technology one encounters the
basic density Pn('r), the probability density of the interval v between
the mth and (m+n+1)th zero-crossing points of a random process.
This density occurs for example in the fields of statistical commun-
ication theory, oceanography, statistical mechanics, biophysics,
and control engineering. When n = O the interval v is celled a zero-
crossing interval. A striking experimental fact is that the successive
zero-crossing intervals of an audio process contain a great deal of
the intelligibility. For the most common random process, a ”
Gaussian process with arbitrary power spectrum, Pn(-r) cannot be
derived explicitly by analytical methods. For a Gaussian process
having a certain class of power spectra, S. O. Rice (1) derived two
functions which can be used to approximate Po('r) and Pi(T) for
small 7. More recently J. A. McFadden (2) and M. S. Longuet-
Higgins (8) derived approximations for P,(r) which compare
favorably with experimental results for a larger class of Gaussian
processes having arbitrary power spectra.

Some other important theoretical work concerned with Pn('r)
has been reported by D. Middleton (3), A. Kohlenberg (4),

Kuznetsov, Stratonovich, and Tikhonov (5), V. I. Tikhonov and I. N.
Amiantov (6), M. S. Longuet-Higgins (7), C. W. Helstrom (9),H. Steinberg,
P. M. Schultheiss, C. A. Wogrin, andF. Zweig (10), D. S. Palmer (11),

H. Debart (12), D. Slepian (13), W. M. Brown (14), J. S. Bendat
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(15), M. Kac (16), I. Miller and J. E. Freund (17), H. Zuhrt (29),
S. Ehrenfeld (30) et al., and L. I. Bialyi (31). Fewer analytical
results concerning PO(T). Pi('r) exist for such a common non-
Gaussian random process as a sine wave signal plus a Gaussian
process, In short, one must conclude that mathematical
difficulties seriously limit the understanding of this statistical
phenomenon. Under such circumstances one is naturally motivated
to turn to experiment for further insight.

Most of the experimental work dealing with this problem has
been reported by G. M. White {18), Favreau, Low, and Pfeffer (19),
C. R. Gates (20), Kjell Blotekjaer (21), and A. I. Velichkin and
V. D. Ponomareva(22). In order to explore the problem further an
experimental system has been designed at this Laboratory. The
system differs considerably from previous experimental systems,
and the measurement is digital rather than analog. This approach
permits the system to work in conjunction with a digital computer
to help analyze the recorded data. Also, the inherent stability of a
digital system allows measurements to be made over periods of
hours or days if required,

This report presents a description of the experimental
system and the following results concerning the zero-crossing

intervals of certain Gausesian processes:




(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)
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PO('r), the probability density function for successive
zero-crosesing intervals.

Pi('r), the probability density function for the sum of
two successive zero-crossing intervals.

p(0, 7), the probability that a given interval T contains
exactly zero zero-crossings.

p(1,7), the probability that a given interval r contains
exactly one zero-crossing.

Z{1,7), the conditional probability that the first
zero-crossing from a given zero-crossing in dr
occurs after the time dr + 1.

Z(2, 1), the conditional probability that the second
zero-crossing from a given zero-crossing in dr occurs
after the time dr + 7.

The expectations and standard deviations associated
with PO('r) and Pi('r).

The correlation coefficient for two successive zero-

crosseing intervals.

This report also presents the following results concerning

the zero-crossing intervals of a random process consisting of a

f

sine wave signal of frequency 79 plus Gaussian noise such that the

signal-to-noise power ratio equals a:




-22-

(1) Po(-r, a), the probability density function for successive
zero-crossing intervals.
(2) P1('r, a), the probability density function for the sum of
two successive zero-crossing intervals.
(3) pa(O. T), the probability that a given interval v contains
exactly zero zero-crossings.
(4) pa“, 7), the probability that a given interval v contains
exactly one zero-crossing.
(5) Za(i,-r). the conditional probability that the first
zero-crossing from a given zero-crossing in dr occurs
after the time dr + 7.
(6) Za(Z,-r), the conditional probability that the second
zero-crossing from a given zero-crossing in dr
occurs after the time dr + 7.
(7) The expectations and standard deviations associated
with Po(-r. a) and P1('r, a).
Finally, this report presents the following results concerning
the intervals defined by the mathematical stationary points of a
random process consisting of a sine wave signal of frequency -fzg
plus Gaussian noise such that the signal-to-noise power ratio
equals a:
(1) Mo('r, a), the probability density function for successive

intervals defined by adjacent stationary points.



(2)

(3)

(4)

(5)

(6)

(7
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Mi(-r. a), the probability density function for the sum of
two successive intervals defined by adjacent stationary
points.

m a(O. 7), the probability that a given interval r contains
exactly zero stationary points.

m .(1, 1), the probability that a given interval 7 contains
exactly one stationary point.

S‘(i, T), the conditional probability that the first
stationary point from a given stationary point in dr
occurs after the time dr + 7.

S.(Z. T), the conditional probability that the second
stationary point from a given stationary point in dr
occurs after the time dr + 7.

The expectations and standard deviations associated with
Mo('r. a) and M1('r.s).

The above probabilities and probability densities were selected

for investigation not only because they are of theoretical interest

but also because they are of practical interest, since they are

observables which are comparatively simple to measure.

The system measures the basic densities Po('r). P‘('r).

Po('r.a). Pit‘r. a), Mo(v. a) and Ml(‘r. a). The remaining probabilities

are deduced by applying the theory of point-processes.

The system

can measure these densities at levels other than the zero level.
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1I. THE MEASURING SYSTEM

A. METHOD OF MEASUREMENT

Instead of measuring successive zero-crossing intervals
the system measures samples of vero-crossing intervals which are
sufficiently independent. However, the random processes under
investigation are metrically transitive (23) or ergodic, and hence
the statistics of these samples are equal with probability unity to
the statistics of successive zero-crossing intervals.

The method of measuring independent samples of zero-
crossing intervals is illustrated in Figure 1. The method consists
of opening and closing an electronic gate at the proper times
following each initiate command. The gate controls the number of
clock pulses counted by an electronic counter. The resulting count
in the electronic counter is then a measure of the sampled zero-
crossing interval. The count is printed on tape in order to monitor
each sampled time interval and to check the average zero-crossing
interval. The count is also punched on paper tape which feeds into
an IBM-7090 digital computer. The circuit details have been
reported in the literature (24).

Selecting a zero-crossing interval that corresponds in
time with the instant of an initiate command tends to favor the long

intervals. Since in general successive intervals are statistically
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Figure 1 Digital Measurement of Independent

Samples of Zero-Crossing Intervals
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dependent, this bias may also bias the selection of an interval that
occurs after an initiate command. Accordingly, the digital system
skips, with equal probability, one or two intervals immediately
following the initiate command and then measures the next interval.
By skipping these intervals the bias associated with selecting
an interval after an initiate command proves to be negligible.
The significance of this biaa has been discussed recently by
McFadden (32). The system has provisions for skipping an
arbitrary number of intervals.
B. SAMPLE SIZE

Consider a histogram approximation to a probability
density Po(u) as shown in Figure 2. After measuring n mutually
independent samples of time intervals let the number of time
intervals in the range u, u + Ju be denoted by Sn and let

u+du

p= j“ P_(u) du . (1)

Let the random variable Xk equal one if the result of the kth
measurement is in the range u, u + Au and zero otherwise. Also,
let all the X have a common probability density with mean p and

variance 02 . Then

S =Z Xk (2)
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and by using the Tchebycheff inequality

2
P'r{ |Sn-np| = t} s -'-:-g— forallt> 0 (3)
where Pr{E} denotes the probability of the event E. Fort = ¢€n

{132 olae}< 2
Pri|-2 -plze} < . (4)
n ne

S
Accordingly, as n =~ o, -nﬂ -~ p with probability 1. This is

Bernoullits (1713) celebrated weak law of large numbers which
played a central role in the notion of probability. Cantelli's (1917)
celebrated strong law of large numbers not only implies the weak
law of large numbers but also asserts that with probability one only

finitely many of the events

|-ﬁ'-‘--p|>e occur as n ~* .

In short, the weak law asserts convergence in probability; whereas
the strong law asserts convergence with probability one.

In experimental work n is limited by practical considerations.
Hence, one needs a quantitative measure of the manner in which
-!-?- approaches p with increasing n. In deriving such a measure
notice that we are dealing with repeated independent trials having
only two possible outcomes. Accordingly, we will adopt a Bernoulli
model and consider each trial as a Bernoulli‘trial. Using the
DeMoivre limit Theorem (1718) and letting q = 1-p we have that as

n - @,




-28-

Pr{-x < S:;:p < x} = Pr{-gJ-PnE-s .Sﬁn. -ps xﬁ } -+ o(x)- of-x)=2 &(x)-1

(5)
where
x 2
®(x) = A I eV /zdy
2n -
Let us require that 'rTn' approach p to within a given arbitrary amount

during 95% of our statistical experience. That is let our confidence

level be 0.95. Then x = 1, 96,and AP_as shown in Figure 2 is given by

Sn Ipq
AP tu= | = -p| s 1.96 |32 (6)
and
1.96 [pq
8P ¥ “Tu Am : )
Probability

Density B(u) AR {rg

S——-—
Au u Normolized Time

Figure 2 Histogram Approximation for Po(u).
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This is the basic result concerning the sample size. It was used to
compute the 95% confidence limits presented with the probability
density functions. Using this basic result we choose n to be

approximately 40, 000,
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II. THE SYNTHESIS SYSTEM

A. SHAPING THE POWER SPECTRUM
The method used to synthesize a Gaussian random
process with prescribed power spectral density is illustrated in
Figure 3. "White® Gaussian noise is applied to a linear network
having a system function H(j2nf). The output of such a network
is a Gaussian random process having a power spectral density
proportional to |H(ijf)|z. Operational amplifiers with

appropriate feedback networks were used to synthesize H(j2nf).

"WHITE"
GAUSSIAN
NOISE

H(v2rmrt)

Figure 3 Synthesis of Gaussian Noise with
Prescribed Power Spectra.

In order to investigate the zero-crossing intervals of
Gaussian proceesses having certain power spectral densities of
interest, the digital system requires a "white®™ Gaussian noise
source having a low frequency cut-off of approximately 1 cps and
a high frequency cut-off of at least 8 Kcps. The theory and design

of such a noise source has been reported in the literature {25).

The theory is described below,
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B. THE "WHITE" NOISE SOURCE
Consider a train of periodic pulees un(t-nTo) with fixed
duration T and with amplitudes determined by the corresponding
amplitudes of an ergodic random process. This random pulse
train may be the result of periodically sampling the amplitude of
a noise voltage y({t) as is shown in Figure 4. Generalizing
Middleton's (3a) result, the power spectral density of the random

pulse train is

[ ¥

s

Q [0 o]
wif) = W1 [ Y K, (KT ) M To s Yo ) sle-g- )J
o

k=-00 m=o
(8)
where

Wulﬂ = average power spectral density of the individual pulses

Ky(ti'tz) = (y1-?1)(y2 -VZ) = noise autovariance function
Y = average value of the pulse amplitudes
To = sampling period

§ =Dirac delta function.

If T, is large compared with the noise fluctuation time --
roughly the mean spacing between successive zero-crossings of

the noise --, then

—_— -2 @
Wi = W (0 [(y’-v’-ur,_ ), au-g:)].
o o
m=0

(9)
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The spectrum consists of a continuous part whose distribution
is determined solely by the shapes of the individual pulses and
whose intensity is proportional to the variance of the pulse
amplitudes. In addition there is a discrete spectrum with components
at multiples of the sampling rate 1/To, whose intensity is
proportional to the square of the average pulse amplitude. A
typical W(f) is shown in Figure 5. If y = 0, then spikes in W(f)
vanish. For the white noise source used in the digital system the
frequency region from near zero to a little less than 1/T° cps

was extracted by a passive linear low-pass filter.

2

—~./ b

l 2 3 4 5 S
o o LT T,

o
FREQUENCY —

Figure 5 The Power Spectral Density for a
Periodic Pulse Train Having Statis-
tically Independent Pulse Amplitudes,
Pulse Duration 7, and Period To'




-34-

Consider the random pulse train x(t), see Figure 4, as the
input to a linear filter with impulse response h(t) as is shown in

Figure 6. Let x(t) be represented by a weighted sum of narrow pulaes:

m'
x(t) = Z yu(t-nT ) . (10)
n= -
X(t V(t
ll,'l' i nn A
TRAIN OF WEIGHTED SUPERPOSITION OF
NARROW PULSES WEIGHTED IMPULSE
RESPONSES
Figure 6 The Linear Filter.

Then, if we assume that the duration ofuo(t)is short compared with

the duration of h(t), uo(t) 2 §(t) and the output V{(t) of the filter becomes

Q0
ao

vm:] x(r)h(t-T)dr = )y h{t-nT ) . (11)

- Q00
n=-0

The filter output V(t) consists of the weighted sum of impulse
responses whose epochs are at integral multiples of To’ as shown
in Figure 7.

What may be said regarding the amplitude distribution

of V(t) ? In general very little, for this is related to the more




Figure 7 Randomly Weighted Filter Impulse Responses




-36-

general problem of determining the output amplitude distribution
of a linear system driven by a non-Gaussian random process.
However, the form of Equation (11) suggests the application of the
central limit theorem of probability. The central limit theorem
asserts that under general conditions the sum of a large number
of independent random variables approaches a Gaussian distribution.
That is to say, if n independent impulse responses produce
non-negligible effects on V(t,), and if n is sufficiently large, then
the ensemble of values V(ti) will be Gaussianly distributed. Since
the distribution is tending toward a Gaussian distribution, we can
perhaps help to minimize n by providing Gaussianly distributed
pulse amplitudes. In any case this is most convenient, for we
need only sample the amplitudes of a Gaussian noise voltage
whose fluctuation time is approximately one-tenth the sampling
period in order to sufficiently approach statistically independent
samples. That is, if the sampling rate is 10 Kcps, then we need
only sample Gaussian noise having an approximately uniform power
spectral density from approximately zero frequency to 100 Kcps.
The amplitude probability density function, p(x), for the
random pulse train x(t) whose amplitudes are Gaussianly distributed

with zero mean is given by 2
X

1 -Zn T
e + (1 - )6 (x) . (12)
T T,

plx) =
[o]
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Also, the characteristic function f(v) of p(x) is given by

@ jvx T vznz T
f(v) = J. e dP(x):Tc—’ exp [-T- +(1-T:).

-0
(13)
where P(x) is the probability distribution function of x. Notice
that if » = T o’ then x(t) is a boxcar waveform and is Gaussianly
distributed. Of course, the output of the linear filter under these
conditions will also be Gaussianly distributed.
In order to apply the central limit theorem to the situation
under discussion, the impulse response of the linear filter
must have a significant width, or memory, extending out to nT .
The value of n required will normally be of the order of ten. For
our particular case the value of n required to regenerate a
Gaussian distribution was experimentally determined to be of the
order of 3 or 4. Hence, for a sampling rate of 10 Kcps a low-
pass filter having a 5 Kcps cut-off frequency will suffice for the
linear filter.
Figure 8 shows the measured amplitude distributions compared
with points representing a Gaussian distribution for the case of a
sampling rate of 10 Kcps and a low-pass filter having a 5 Kcps

cut-off frequency.




plv)

THEORETICAL
POINTS

EXPERIMENTAL

CURVE \

Figure 8 The Measured Amplitude Distribution
p(v) Compared with Points Represent-
ing a Gauesian Distribution.
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C. THE POWER SPECTRA CONSIDERED
The results presented in this report are concerned with

the following power spectral densities:

w_(f) = ——:-—{1 where w = 2nf (14
1+(r

(o]

W, () = ____;’__2_2 wherew1=21rfi=;1— (15)
i+(r;) :' !

Wz(f) = ———1———3— where w, = Z'rrf2 = ;1—

(16)
[H({;) 2]

oy

f 4
(1-3-) i
w3(f) = ——-—;——Z——z— where w 3= wa3= -T—:;
[“(r) ]
3

(17)

2
(f'f4)

W4(f) = e zo where Wy = Zﬂf4 (18)

f4
and *Q factor®" = oo =6
204/1n4

.1

These particular power spectral densities were selected for

investigation because they are representative of the spectra that occur
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in many branches of science and technology, and because
theoretical approximations for the corresponding P 0(7) have
been reported (2, 8, 19).

The corresponding system functions Hn(ijI) were synthesized
on an analog computer as indicated in Figures 9 and 10. The system
function H 4(ijf) corresponding to the Gaussian power spectral
density W4(f) was synthesized by stagger tuning 9 single tuned
filters. In this manner the poles of H4(jZ1rf) were located at the
theoretical (33) pole positions corresponding to a 9 th order
approximation to the unrealizable Gaussian power spectral density.
Figure 11 shows a comparison of the sinusoidal gain of the filter
structure as a function of frequency with the theoretical Gaussian
function. The comparison is excellent.

The Wiener -Khinchin theorem gives the normalized

autocorrelation function for the above power spectra as:

o)
f o Wn(f) cos 2vuirdf

a
[ w0 a
o

Pa(T) = (19)

n=090,1,2,34

The results of the integrations yield:

3 nw
-w_|7] -w_|r|cos
po('r)=Sin-{114 {e ° T +2 2 e ° Tcoa[-’.‘,!-wohlain%’-'] }

n=1

(20)
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-w, ||
p () = (1 +u,|r]e (21)
2
(w,7) -w, |7}
pptr = [t+wylrl+ —5— e 22)
-w,|7]
p4lr) = [1 + w3|-r| - 2(w37)z +%(w3|-;«|)3] o 3
(23)
2
pylr) = cosw 7 e~2(moT) (24)

The quantity w7 appearing in the normalized autocorrelation
functions is defined as normalized time and is denoted by u . All
probabilities and probability dcnsities reported in this report are
plotted with respect to normalized time u sw.T.

The initiate commands discussed in Section JI-A above were
spaced approximately one second apart. Accordingly, in order to
obtain samples of zero-crossing intervals which are sufficiently

independent, the time constants and frequencies associated with

the power spectral densities were chosen as:

TY=Ty= 10m sec (25)
T, = 5m sec (26)
f =80cps (27)
f4 = 30.8 cps . (28)

Also, for experimental convenience the synthesized power
spectral densities had a low frequency cutoff of approximately 1 cps

and a high frequency cutoff of 8.5 kc.
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D. RANDOM POINT.PROCESS TRANSFORMATIONS

Consider the linear system shown in Figure 12.

"WHITE" :
GAUSSIAN nozet) PO b w2en Y o 0200 R
NOISE

Figure 12 The Linear System.

The power spectral density for the Gaussian random process x(t)
is given by

w () = |H(2n)| : (29)
Similarly, the power spectral density for y(t) is given by

W) = |HG2+) | | D, (200 |% = W_(0)| D, (i2nf) |2
(30)
It Di(jZ-nf) is the system function representing an ideal differentiator
then the stationary points of x(t) and the zero points of y(t) occur
simultaneously,
If y(t) is a Gaussian process having arbitrary power spectral
density Wy(f), the average number of zero points per second is

given by (27)
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o3} 1/2
[ fw ()t
S (31)

00
[ o Wy(f)d.f
Hence, the average number of stationary points per seco~d for a

Gaussian process x(t) having power spectral density Wx(f) must be

@ ao
2 2.2 1/2 4 1/2
J oW ()4t af i J oW (faf
(e o] a
22 2
[ o Wy lf)an® £ af [ o £°W tf)af
(32)

This last equation agrees with Rice's result (27).

The average number of inflection points per second for a
Gaussian process x(t) having power spectral density Wx(f) can be
determined in a similar manner. Thus, if also DZ(ijf) = j2nf, then
the average number of inflection points per second for a Gaussian

process x(t) having power spectral density Wx(f) must be

a0 (¢ o]
[ W _(0) tentrtas | 12 [ oW 0y ar |1/
x < 2 o "x
© 4.4 ) © 4 '
j‘owx(f)um £ af [ of W (f) af
(33)

The same transformation can be extended to higher derivatives.
A method for synthesizing a Gaussian process y(t) having

zero points corresponding in time with the stationary points of a
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Gaussian process x(t) having a Butterworth power spectral

density is shown in Figure 13.

"WHITE"
GAUSSIAN
NO)SE

HO(JZH)

x(t)

D(J2wt)

Figure 13 Transformation of Stationary Points to Zero Points.

The circuit having the system function D(j2nf) is shown in

Figure 14,

Figure 14

5K 0.02pf

—AN—{(—

100ppt

M

+"\V\\—

L_{>_J

The Synthesis of D(j2nf).
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The system function D(j2nf) is given by

2§1072y

[1+310'4w]z

D(j2«f) = (34)
Accordingly, D(j2nf) has the property of a differentiator since
|D(j2l|rf)|2 behaves like fz to well within £ 1 db in the frequency
range of interest (0-500 cps).

Taking D{j2vf) as 2§10"2y we find that

2 _ ;oo L2 -272 2 2
0= % Wl of oy = [4m0™%]% [ £°W (nat
(35)
and /
w 1/2
o) -2 Sinn
-0—5 = 41' 10 IO [—s—i:n-zg = 6. 007 (36)

This final ratio was verified satisfactorily by using an RMS
voltmeter.

Osncilloscope photographs illustrating the transformation of
stationary points to zero points by the operator D(j2nf) are shown
in Figure 15. The probability densities associated with the intervals
defined by the mathematical stationary points of a random process
consisting of a sine wave plus a Gaussian process were determined
experimentally by using the operator D(j2nf).

Figure 16 shows a complete block diagram of the measuring

and synthesis systems.
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ont-

Figure 15:

mf-

The Stationary Points of x{t) and the Zero
Points of y(t) Occur Simultaneously.
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IV. MATHEMATICAL DEDUCTIONS FROM THE
PROBABILITY DENSITIES

A. Kohlenberg (4), P. I. Kuznetsov, P. L. Stratonovich and
V. 1. Tikhonov (5), J. A. McFadden (2), and perhaps others, have
derived some basic identities relating p(n, 7), the probability that
a given interval (t, t + 7) contains exactly n points, and Pn(-r). the

probability density of the interval between the mth and (m+n+1)th

points. These identities apply to general stationary point-processes.

Using McFadden's general result (26) we have for a point set

defined by the zeros of a random process:

oo
p'n,7)=-p [ ] [Pa)-2P )+ P, ()] ae
(37)
where
B = the expected number of zeros per unit time

Pn('r) = the probability density function for the sum of
n+1 successive zero-crossing intervals

p'(n, 7) = the derivative with respect to 7 of the probability
that a given interval 7 contains exactly n zeros.
Also, by definition, we have
oo
Zintt, )= [ Pyle) e ' (38)
where

Z(nt+1, 1) = the conditional probability that the (n + 1)th zero-
crossing point from a given zero-crossing point
in d7 occurs after the time dr + 7.
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For n = 0, and the initial condition p(0, 0) = 1, Equation (37) yields

T T
p(0,7) = B [fo dr, [ 1P0(1)d1-7J+1. (39)
o

For n = 1 and the initial condition p(1, 0) = 0, Equation (37) yields

T 71 T '1’1
pit,7)=p [ [ dr, [ "P(0)ae-2[ dr, [ * P (0)dt+r

(40)
For n = 0 Equation (38) becomes
@
z(t,7)= [ P_(t) e . (41)
T
For n = 1 Equation (38) becomes
o
z2,m) = _ P,lt)ae : (42)

Equations (39), (40), (41), and (42) were used to deduce
pl(0, un). pl1, un), Z(1, un) and Z(2, un) for n= 1,2, 3 and 4.

Similar expressions hold for the point set defined by the
zero points of a random-process consisting of a sine wave signal
of frequency 22 plus Gaussian noise such that the signal-to-noise

power ratio equals a. That is:

T T
pa(O,'r)=‘3a[‘]‘0d'r1 ‘r 01 Po(!.a)dl -T J +1
(43)
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AT . T

T T
p(1.7) = pa[ J L 9 J o‘ P,(2,a)de-2 I0d11 IO’ Po(l.a)dl+-r]

(44)
o
z (1.7) = J . P (r,2) (45)
©
z,(2,1 =] Pea)d (46)
where T
B, = the expected number of zeros per unit time when

the signal to noise power ratio equals a.

Equations (43), (44), (45) and (46) were used to deduce

pa( o, uo), pa( 1, uo), Za( 1, uo) and Za(Z, “o) fora=0,.2, 1 and 4.

y

Similar expressions also hold for the point set defined by the

mathematical stationary points of a random process consisting of a
sine wave signal of frequency _Z‘Z plus Gaussian noise such that the

signal-to-noise power ratio equals a. That is:

T FTy
ma(0,7)= Ya [JodTi Jo Mo(l.a)dl -‘r] + 1
(47)

T

T .‘1’1 T 1
m_(1,7) = d M,(t,a)dL-2 d M (t,a)de+
at 7 Ya[jo T4 .]0 g\ Ha '[0 T4 Jo olt:2) 7]

(48)
e o)

s,(1,7) = jT M_(2,2) dt (49)

a0
5,(2,7) = J? M,(1,2) dt (50)
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where

Y = the expected number of stationary points per unit
time when the signal-to-noise power ratio equals a.

Equations (47), (48), (49), and (50) were used to deduce

ma( 0, uo). ma“'“o)' S.(i,uo) and Sa(Z.uo) fora =0, .2, 1and 4.
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V. PROPERTIES OF THE PROBABILITY DENSITIES

A. EXPECTATIONS

Coneider the point set shown in Figure 17 and defined by
the zero-crossing points of a Gaussian process. Let X, Y be two
successive zero-croesing intervals and let Z = X + Y. From symmetry
the expectation E(X) equals the expectation E(Y). Hence, E(Z)=2E(X).
Accordingly, the expectations, E1(un), associated with the Pi(un)
densities are related to the expectations, Eo(un).as sociated with
the Po(un) densities by:

Ei(un) = ZEO(un) forn=1,2,3,4 (51)

The exact theoretical expectations, Eo(u“). associated with
the Po(un) densities, or the average values of successive zero-croseing

intervals, are given by (27)

Successive Intervails,t, , Defined By Adjocent Stationary Points

R 1er

ARSI RRS
HEURIRYNE
|||| ’ : [ | 1
P LVARY ]
VALUE LEVEL | | ! W E\Virme-—: | !
[ | I [ | | | \
———b—4 b ¢

-——-x—+
z

Figure 17 Point Sets Defined by the
Zero-Croseing Points and
the Stationary Points of a
Gaussian Process.
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1/2

] = w[-p00) ] B

(52)

a
J o W, (faf /2 .

o 1
EO(“n)"" f o unPo(un)dun= T, [ =5
I of w_(fnf

forn=1,2,3,4

p‘!;(un) is the second derivative of the normalized autocorrelation

function pn(un)' The results forn = 1,2, 3, and 4 are:

EO(ui) = (53)
Egfu,) = 5. 4414 (54)
Eqglu,) = 1.4050 (55)
Eqlu,) = 3. 1341 . (56)

From Equation (51) the theoretical expectations, Ei(un)’
associated with the Pi(“n) densities are equal to ZEO(“n) for
n=1,2,3 4. The expectations EO(“n) and Ei(“n) were also measured.
They are compared with the corresponding theoretical values in the
tables accompanying Figures 18, 19, 22, 23, 26, 27, 30, and 31{. The
comparisons are satisfactory in all cases.

Similarly, the expectations, Ei(uo' a),associated with the
Pi(“o' a) densities are related to the expectations, Eo(uo, a), associated
with the Po(uo, a) densities by:

Ei(uo, a) = ZEo(uo, a) for alla . (57)

The exact theoretical expectations, E_(u_,a), associated with
the Po(uo. a) densities follow from a general result given by Rice (34) '

and Middleton (3, 3a):
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® X (- !
2' 1
Eo(uo.a) = j' 0 YoPolu, aldu —znﬁ[ z —z——)-;-—( ba)" (z;nH;-a):I
n=o
for all a {(58)
where
(o,)n=(n)(a+ 1)(a+2)... (a+n-1)
(q,)o =1
= % . Aaverage sine wave power
average noise power
b= Sin v
4Sin 17
4Fy = the confluent hypergeometric function.
The results for a = 0, .2, 1 and 4 are:
Eo(uo, 0) = 5.2587 (59
Eo(uo. .2) = 5.4065 (60)
Eo(uo, 1) = 5.8286 (61)
Eo(“o' 4) = 6.2506 . (62)

For small values of "a®, the random process consisting of a
sine wave signal of frequency-fzo- plus Gaussian noise is approximately
Gaussian. Accordingly, one could compute easily the approximate
theoretical expectations, E:(uo. a), associated with the po(“o' a)
densities by using an equation analagous to Equation (52). That is:

-1/2 1/2

E:(uo,a) = [-R"(O,a)] [ 1+a

(63)
R"(uo, a) is the second derivative of the normalized autocorrelation
f
function, R(uo, a), defined by the power spectral density Wo(f)+86(f--2?-).

R(u_,a) is given by:
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u

po(uo)+a cos 'Zg
R(“o'a‘) = T+a (64)
Equation (63) agrees with Bendat's result (15).
The results fora =0, .2, 1 and 4 are:
E'(u_,0) = 5.2587 (65)
o'’ o
Ep(u,,.2) = 5.3951 (66)
Epfa_.1) = 5.7031 (67
Eo(u_,4) = 6.0306 : (68)

From Equation (57) the exact theoretical expectations,
Ei(uo.a), associated with the Pi(uo.a) densities are equal to
ZEo(uO, a) for all a. The expectations Eo(uo. a) and Ei(uo' a)
fora =1, .2, 1, and 4 were also measured. They are compared
with the corresponding exact theoretical values in the tables
accompanying Figures 34, 35, 38, 139, 42, 43, 46, and 47. The
comparisons are satisfactory in all cases.

Finally, the expectations, & 1(uo, a), associated with the
Mi(uo’ a) densities are related to the expectations, Co(uo, a),
associated with the Mo(uo. a) densities by:

‘1(“0' a) = 2¢ 0(uo. a) for all a . (69)

The exact theoretical expectations, eo(uo, a), associated with
the Mo(u o’ a) densities follow by applying the transformation
associated with the ideal differentiator operator to the general

result given by Rice and Middleton:
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i
@ (-3 -1
Eo(uo,a) = J' . quO(uo, a)duo =2% [ z -(——)—2—- {- ca) 1F1(z.n+1 ba)]
n=0
for all a (70)
where 5o
.. Sinr_{—
16Sin T‘%

The results fora =0, .2, 1 and 4 are:

e fu . 0) = 3.7765 (71)
e (v, -2) = 3.9429 (72)
e lu,. 1) = 4.5467 (73)
e (v, 4)=5.8138 . (74)

Again, for small values of "a" the random process
consisting of a sine wave signal of frequencyfg plus Gaussian
noise 18 approximately Gaussian. Accordingly, one could compute
easily the approximate theoretical expectations, e:(uo, a), associated

with the Mo(uo. a) densities by using an equation analagous to

Equation (52). That is:

* 1+ ab 1/2

eru,.a) = -R'S'(O,a)] = v fE [ 122
(75)

R's' (uo, a) is the second derivative of the normalized autocorrelation
function, Rs(uo, a).fdefined by the power spectral density
wzwo(f) + mZSG(f - -29- ). This latter power spectral density results by
applying the transformation associated with the ideal differentiator

operator to the power spectral density
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Wo(f) + S8{f - 29 ). Rs(uo' a) and R(u_, a) are related by:
R'(u ,a)
R (u,a)=z ——2 foralla . (76)
8o R" (0, a)

The results fora =0, .2, 1, and 4 are:

8:':(\10, 0) = 33,7765 (77)
erlu,. .2)= 3.9341 (78)
e¥(u . 1) = 4.3994 (79)
8:(u0,4)= 5.1910 . (80)

From Equation (69) the exact theoretical expectations,
e '(uo, a), associated with the Mi(“o' a) densities are equal to
Zso(uo. a) for all a. The expectations eo(uo. a) and 61(\10. a)
fora=20, .2, 1, and 4 were also measured. They are compared
with the corresponding exact theoretical values and the approximate
theoretical values in the tables accompanying figures 50, 51, 54,
55, 58, 59, 62, and 63, The comparisons are satisfactory in

all cases.

If one represents the sine wave as the limit of a narrow-band
f

Gaussian process centered at _Zo_ as the bandwidth approaches zero,
*
then it becomes clear that the expectations Eo(u

. *
are exact for the case of a random process £ (t,a) of the form:

L 3
o' a) and Co(uo. a)

w t
£*(t, a) = R(t) Sin [+ + o) ] +nt) . (81)
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In this last equation the random variable R, has a Rayleigh
probability density function, Gt is uniformly distributed in the
interval (o, 2w), and n(t) is Gaussian noise having a power spectral
density Wo(f). In other words E::(uo. a) and C:(uo, a) are exact for
the Gaussian process, g*(t. a), defined by a very narrow-band
Gaussian signal centered at -fz‘z plus Gaussian noise having the
power spectral density Wo(f). Equation (81) should be compared
with random process, £(t,a), defined by a sine wave signal

plus Gaussian noise which has the form:

w_ t
Eft,a) = Ao Sin [ —g— + S(t)] + n(t) where A0 is a constant.

(82)
B. STANDARD DEVIATIONS AND CORRELATION
COEFFICIENTS
Since Z = X + Y, the variance of Z is given by:
Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y) (83)
where
Cov(X, Y) = E(XY) - E(X) E(Y)

The correlation coefficient, K(X, Y), of X,Y is given by

K(X,v)= —covX.¥) . (84)

v Var{X)Var{Y)
From symmetry, we have

Var(X) = var {Y) . (85)
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Hence,

Var (Z) = 2 [1 + x] Var (X) . (86)

Let K be the correlation coefficient between two succeseive
zero-crossing intervals of a Gaussian process having the power
spectral density Wn(f). Then, the variances, oi’(un), associated
with the Pi(un) densities are related to the variances, o i(un),

associated with the Po(un) densities by:

ofta)=2 [t+K ] oltu)forn=1,2,34 (87
Similarly,

odlu, 0 =2 [1+K ] o2t 0) (88)

Du,,0) =2 [1+% ] Ditu,,0) . (89)

In the latter two equations o%(uo, a), o (Z)(uo, a), Di(uo, a) and
Di(uo, a) are the variances associated with the respective densities
Pi(uo, a), Po(uo. a), Mi(uo, a) and Mo(uo, a). Also K  and xo are
the correlation coefficients between two successive zero-crossing
intervals of the Gaussian processes having the respective power
spectral densities Wo(f) and wzwo(f).

McFadden (32) recently derived the following equations

valid for a general random process:
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2 @
Qo o 1
A= rir)dr = —2 + (-1)® (90)
f o Eo(’r) [ z ngi o ]
© 1 o’ 15 1
B= Ulr) - dr = —p + N
[ (oo gy ] gﬁ;’,[z L ] -7
(91)
where

r{r) = the normalized autocorrelation function of the
infinitely clipped random process

oi = variance of successive zero-crossing intervals
1 : s
EO(T) =5 = Expectation of successive zero-crossing intervals

Pp = correlation coefficient between the ith and (i+n)th
zero-crossing intervals

U(r)dr = the conditional probability that a zero occurs
between t+7 and t+7+dr given a zero at time t.

If one assumes that successive zero-crossing intervals form
a Markov chain in the wide sense, then P = p? and

2

A= no 1'91 >0
) th] I+P1
for all |p1| <1 (92)
2
o 14p
o 1 1 1
B= —) -3 >- - {93)
e T 272

Equations {92) and (93) were used by McFadden (2) to compute o,
and Py for various Gaussian processes. We used Equations (92)

and (93) to compute 0o and p, for most of the Gaussian processes
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considered in this report. In some cases our results differ
somewhat from those reported by McFadden. The standard
deviations resulting from the Markov assumption together with

the standard deviations computed from Equations (87), (88) and

(89) are compared with the experimental standard deviations in the
tables accompanying Figures 18, 19, 22, 23, 26, 27, 34, 35, 50,
and 54. From the comparisons of the standard deviations in the
tables accompanying Figures 26, 27, 50, and 51, we conclude

that successive zero-crossing intervale of some Gaussian processes
do not form a Markov chain in the wide sense.

Notice that the Markov assumption implies that if p, > 0
then P > 0 for all n. Also, the Markov assumption implies the
inequalities given by Equations 92 and 93. These restrictions are
not clearly implied by the Gaussian character of the process and
depend only onthe Markov assumption. Accordingly, one might
surmise that the successive zero-crossing intervals of some
Gaussian processes do not form a Markov chain in the wide sense.

From Equations (90) and (91) we have that:

Qo

E (v)
2 2 P2n-1° '_%_ [EO(T) (B + %) - A] ) (94)
n=1 %

Qo

As an approximation, let us assume that z Pan-q = 0- (95)

Then, (") n=2
E _(r
pr=—g— [Eq)(B+g)-a]. (96)

20o




-65-

By applying Equation (96) to most of the Gaussian processes
considered in this report and by using the experimental variances
for successive intervals, the experimental correlation coefficients
between two successive intervals were computed. The results
are given in the tables accompanying Figures 18, 22, 26, 34, and
50,

If the variances for the sum of two successive intervals are
computed from Equations 87, 88, and 89 by using the experimental
variances for successive intervals and the experimental correlation
coefficients between two successive intervals,the results agree
with the measured variances for the sum of two successive
intervals to within the experimental error. Hence the experimental
values of the correlation coefficients between two successive
intervals yield results consistent with experiment. This serves
as partial justification for the assumption given by Equation (95).

If one assumes that Py = 0 for n 2 2, then Equations
(90), (91), and (86), can be used to compute approximate
theoretical values of 0y Pyando, {or Gaussian processes. For
the Gaussianprocesses considered in this report, these approximate
theoretical values compare with our experimental values slightly better
thanthe correspondingtheoretical values resulting from the Markov

assumption.
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For a Gaussian process, Rice (1) derived U{r)dr, see
Appendix, the conditional probability that a zero occure between

t+Tandt + 7+ dr given a zero att. Hence,

a
U(7)=z Pr) . (97)

n=0
Also, for a Gaussian process, Rice (1) derived Q(r)dr, see
Appendix, the conditional probability that a downward zero-
crossing occurs betweent + 7 and t + 7 + dr given an upward

zero-crossing at t. Hence

ao
Q= ) P, (r) (98)
m=0
and .
Ul - Q= ) Py ) (99)
m=0

From Figure 31 and Equation (98) we see that the first
portion of Q(u4) generates Po(u4). Similarly, from Figure 32
and Equation (99) we see that the first portion of U(u 4) - Qlu 4)
generates Pi(u4). The first normalized portion of the Q(u4)
function was used to compute approximate theoretical means and
variances associated with the Po(u4) density. Similarly,
the first normalized portion of the U(u4) - Q(u4) function was used

to compute approximate theoretical means and variances associated
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with the Pi(u4) density. By using these computed variances in
Equation (87), the approximate theoretical correlation coefficient
between two successive intervals, K4. was computed. Because
of the unfavorable propagation of errors associated with
Equation (87), K4 should be regarded as a rough estimate.
These approximate theoretical results are compared with
other results in the table accompanying Figures 30 and 31.

All experimental standard deviations were computed by
using the theoretical mean values. In general, these standard
deviations would decrease somewhat if one were to use the

experimental mean values in the computations.
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Vl. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE ZERO POINTS OF GAUSSIAN PROCESSES

A. POWER SPECTRAL DENSITY W,(f)

Probabilities and probability densities defined by the
zero-crossing points of a Gaussian process having a power spectral
density W, (f) are presented in Figures 18, 19, 20, and 24. Theore-
tical approximations derived by S. O. Rice{i) and J. A. McFadden
(2) are presented in Figures 18 and 19 for comparison purposes.
Figure 18 also presents for comparison an exponential density
which was suggested by R. R. Favreau, H. Low, and I. Pfeffer (19)
as the exact probability density. From this latter comparison
we see that the experimental PO(“i) and the exponential curve
deviate significantly in the neighborhoods of u, = 1 and u, = 5.
Accordingly, we conclude that the exact probability density is not
the suggested exponential.

From Equation (98) we have that:
Q(r) 2 PO('r) for all r . (100)

Accordingly, Rice's Q(u,) function serves as an upper bound

for PO(“i) and is presented in Figure 18. Recently, M. S. Longuet-
Higgins (8) deduced bounds for PO(O) theoretically as 0. 382 <

PO(O) < Q(0) = 0. 406 and deduced the approximate value PO(O) =0, 385.
The inequality 0. 382 < P,(0) was used by Longuet-Higgins (8) to
disprove rigorously the exponential conjecture of Favreau et al.

From Equation (99) we have that:
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U(r) - Q(r) =2 P,(r) for all 7. (101)

Accordingly, Rice's U(u,) - Q(u,) function serves as an
upper bound for Pi(“i’ and is presented in Figure 19, Longuet-
Higgins (8) deduced bounds for P,(0) theoretically as 0.0645
< P1(0) < U(0) - Q(0) = 0.0726 and deduced the approximate value
P,(0) = 0.0653.

G. M. White (18) experimentally determined the following
probabilities concerning the zero-crossings of a Gaussian process
having a power spectral density W, (f):

(1) W+(0.u1). the probability of having no zero-

croasings with positive slope in a time interval u,.

(2) W+(i,u1). the probability of having one zero-crossing

with positive slope in a time interval u,.

In general
W,(0,7) = pl0,7) + 3 plt, 7) (102)
and
W, (1,7) = 2 p(1,7) + 2, 7) + 7p(3,7) (103)
or
P“"r)
P(2,7) < W (1,7) - 3251 . (104)

Equation (102) states that the interval can contain no upcrossings
in two ways: Either it contains no crossings at all, or it contains
one, If it contains one, then with conditional probability % it is

either upward or downward.
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Equation (103) states that the interval can contain exactly
one upcrossing in three ways: Either it contains one crossing, or
two, or three. If it contains one, then with conditional probability
-12 it is upward or downward. If it contains two, then one of them
must be upward. If it contains three, then one or two of them
will be upward, each with probability % .

Figure 20 compares p(0,u,) + % p(1, “1) with W+(0, us). The
comparison is excellent. Also, Figure 20 presents both W+(1. u,)
and p(1, “i)' Accordingly, an upper bound for p(2, u,) can be
readily computed from inequality (104). This upper bound agrees
satisfactorily with the approximate theoretical initial behavior
pl2,u,) ~ 23%‘3 (u,)? which was deduced by Longuet-Higgins (8).

Figure 19 compares the convolution of Po(ui) with itself,
po(“i) * Po(“i)' and pi(“i)' This comparison serves to
demonstrate that two successive zero-crossing intervals are
statistically dependent. A theorem is proved in Section IX which
asserts that for Gaussian processes the sum of m + 4 successive
zero-crossing intervals and the sum of the next n + 1 successive
zero-crossing intervals are statistically dependent. The
theorem applies for all nonnegative integral m and n.

B. POWER SPECTRAL DENSITY Wz(f)

Probabilities and probability densities defined by the

zero-crossing points of a Gaussian process having a power spectral
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density Wz(f) are presented in Figures 22, 23, 24, and 25.
Theoretical approximations derived by Rice (1) and McFadden (2)
are presented in Figure 22 for comparison purposes. Figure 22
also presents an experimental probability density reported by
Favreau, et al (19). Rice's U(uz)-Q(uz) function is presented
in Figure 23 for comparison purposes. Figure 23 also compares
the convolution of Po(uz) with itself, Po(uz) * Po(uz). and

Pi(“z)' This latter comparison was intended to exhibit the
statistical dependence of two successive intervals. In this case
the convolution function is nearly equal to Pi(uz). However, as the
theorem of Section IX asserts, two successive zero-crossing
intervals are still statistically dependent.

The theoretical initial values of Po(uz) and Pi(uz) are
zero since Rice's U(uz) function is initially zero.

C. POWER SPECTRAL DENSITY Wa(f)

Probabilities and probability densities defined by the zero-
crossing points of a Gaussian process having a power spectral density
Wa(f) are presented in Figures 26, 27, 28, and 29. Theoretical
approximations derived by Rice (1) and McFadden (2) are
presented in Figure 26 for comparison purposes. Figure 26 also
presents an experimental probability density reported by

Favreau, et al. (19).
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Rice's Q(u3) function serves as an upper bound for PO(uB)
and is presented in Figure 26. Longuet-Higgins (8) deduced
bounds for PO(O) theoretically as 0.612 < PO(O) < Q0) = 0,650
and deduced the approximate value PO(O) + 0.616. Also, Longuet-
Higgins (8) deduced bounds for Pi(O) theoretically as 0.103 <
Pi(O) < U(0) - Q(0) = 0. 116 and deduced the approximate value
Pi(o) £ 0.104,

The experimental probabilities p({0, un) forn=1,2,13
satisfy theorems 1, 3 and Equation (22) of D. Slepians (13) recent
paper regarding bounds for these probabilities.

Rice's [U(u3)-Q(u3)] function is presented in Figure 27 for
comparison purposes. Figure 27 also compares the convolution of
Po(u3) with itself, Po(u3) * Po(u3). and P,(u3). This latter
comparison serves to demonstrate that two successive zero-
crossing intervals are statistically dependent.

The experimental probability densities Po(un) forn=1,2,3
agree very well with theoretical approximations recently published
by Longuet-Higgins (8). The approximate theoretical initial
values of Longuet-Higgins were used in the normalization of the
experimental densities Po(un) and pi(“n) forn=1, 3.

D. POWER SPECTRAL DENSITY W ,(f)

Probabilities and probability densities defined by the
zero-croesing pointes of a Gaussian process having a power spectral
density W4(f) are presented in Figures 30,.31, 32,and 33. Theoretical

approximations derived by Rice (1) are presented in Figures 30 and 31 for
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comparison purposes. Figure 31alsocompares the convolution of the
first normalized portion of Q(u4)with itself, Q(u4)*Q(q4). and the
first normalized portion of U(u4) - Q(u4). In accordance with
Equations (98) and (99), this comparison serves to demonastrate
that two successive zero-crossing intervals are statistically
dependent. The theoretical initial values of Po(u4) and Pi(u4)

are zero since Rice's U(u4) function is initially zero.

The results in Figures 32 and 33 were computed by using
Equations (39), (40), (41), and (42). The first normalized portions
of Q(u4) and U(u4) - Q(u4) served as Po(u4) and Pi(u4)
respectively.

In order to obtain good experimental estimates of oo(u4) and
04{u,), we see from Figures 30 and 31 that the experimental densities
Po(u4) and P1(u4) must be measured with finer resolution.
Accordingly, our present experimental estimates of o o(\14) and
0,(u,) are not worth reporting.

Notice that a "Q factor" of 6.1 as defined in Eqation (18) is
approximately the minimum "Q factor" representing a "™narrow-band
system® as defined in communication theory. Accordingly, the
problem of theoretically determining PO('r) and Pi(-r) for narrow-
band Gaussian processes is practically solved by using Rice's
Qfr) and[U('r) - Q('r)]functions as the generating functions of Po('r)

and P,(7) in accordance with Equations (98) and (99).
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A portion of the above work dealing with Gaussian processes

has been published recently in the IRE Transactions on

Information Theory (35).
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VII. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE ZERO POINTS OF A SINE WAVE PLUS A

GAUSSIAN PROCESS

Probabilities and probability densities defined by the
zero-crossing points of the random process, £(u, a), consisting
of a sine wave of frequency ;9- plus Gaussian noise having a
power spectral density Wo(f) are presented in Figures 34 thru
49. The ratio of the average sine wave power, S, to the average
noise power, N, is denoted by the parameter a. For small values
ofas= % , the random process £(u, a) is approximately Gaussian
with normalized autocorrelation function, R(uo. a), given by
Equation (64). Accordingly, Rice's probability function Q*(uo. a)duo
approximates the conditional probability that a downward zero-
crossing of £(u, a) occurs between u + u,and u + u + dn_o. given an
upward zero-crossing of £(u, a) at time u. In accordance with
Equation (98), Q*(uo. a) serve as approximations to the initial
behavior of Po(uo. a) for small "a™ and are presented in Figures
34, 38, 42, and 46, Figure 34 also presents McFadden's
theoretical approximation for Po(uo, 0). Q*(uo. a) dug is the
exact conditional probability that a downward zero-crossing of
g*(u. a) occurs between u + u, and u + u, + duo, given an upward
zero-crossing of g*(u, a) at time u. The process §*(u.a) is
defined by Equation (81) and the process £(u, a) is defined by
Equation (82). When a = 0 the processes £(u, 0) and g*(u. 0) are

identical.
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Figure 44 p_(n,u ) is the Probability that a Given

Iterval u_ Contains Exactly n Zero-
Croseing Boints of ». Random Process
Consisting of a Sine Wave of Frequency

f /2 Plus Gaussian Noise Having the
Power Spectral Density W _(f). The Ratio
of the Average Sine Wave Bower to the
Average Noise Power is Denoted by the
Parameter a.
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Figure 48 p.(n,u ) is the Probability that a Given

bterval u_ Contains Exactly n Zero-
Crossing Points of a Random Process
Consisting of a Sine Wave of Frequency
f /2 Plus Gaussian Noise Having the

ower Spectral Density W _(f). The
Ratio of the Average Sine Wave Power
to the Average Noise Power is Denoted
by the Parameter a.
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Similarly, for small values of a = 1S§:' Rice's probability
function U*(uo. a)du, approximates the conditional probability that a
zero of £(u, a) occurs betweenutu, and utuytdu_givena zero of
£(u,a)attimeu. In accordance with Equation (99), U*(uo. a)-Q*(uO, a)
serve as approximations tothe initial behavior of P1(u0. a)for small "a™
andarepresentedin Figures 35, 39, 43, and 47. Notice that U*(uo, a)duo
is the exact conditional probability that a zero of g*(u, a)occurs between
utu, and utugtdu, given a zero of g*(u, a) at time u.

Figure 35, 39, 43, and 47 also compare the convolution
of Po(uo. a) with itself, PO(“O' a)*PO(uO. a), and Pi(uo. a) for
a=0, .2, 1, 4. These latter comparisons serve to demonstrate
that successive zero-crossing intervals of £(u, a) are statistically
dependent.

For a general random process, McFadden (28) showed that:

a
2;."5(:) - Z (-1"P_(r) . (105)
n=0

r''(7) is the second derivative of the normalized autocorrelation
function of the infinitely clipped random process. The normalized
autocorrelation function r{u,, a), see Appendix, for the infinitely
clipped process T (u,a) can be computed from a general result
given by Davenport (40) and Middleton (3a).

Figure 46 compares the experimental PO(uO' 4) with a first

r"(ug, 4)

portion of Eo(uo. 4) in accordance with Equation (105).




B e A —

The comparison is excellent.
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Figure 47 compares the experimental
r''(u,, 4)

Pi(uO’ 4) with a second portion of —_— Eo(uo. 4) in

accordance with Equation (105). Again, the comparison is

excellent.
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VIII. PROBABILITIES AND PROBABILITY DENSITIES DEFINED

BY THE STATIONARY POINTS OF A SINE WAVE PLUS

A GAUSSIAN PROCESS

Probabilities and probability densities defined by the
mathematical stationary points of the random process £(u,a),
defined by Equation (82), are presented in Figures 50 thru 65. For

small values of a = %. the random process

dé(u, a)
T\(“- a) =3I (106)

is approximately Gaussian with normalized autocorrelation function,
R'(uo,a), given by Equation (76). Accordingly, Rice's probability
function Q:(uo. a)du approximates the conditional probability that

a downward zero-crossing of n{u, a) occurs between u + u, and
u+ugt duy, given an upward zero-crossing of n{u, a) at time u.

In accordance with Equation (98), Q:(uo, a) serve as approximations
to the initial behavior of Mo(uo. a) for small "a" and are presented
in Figures 50, 54, 58, 62. Notice that Q:(uo. a) dug is the exact

conditional probability that a downward zero-crossing of

E 3
" (u a) =3§-'a-fy"4ﬂ (107)

occurs between u + u, and u + ug + duo, given an upward zero-
%
crossing of n (u,a) at time u.
Similarly, for small values of a = !Sq, Rice's probability

function U:(uo, a) du, approximates the initial behavior of the




‘gImsay [ejuswnIadxy Yimm paxedwo) axe suoljewrxoxddy

[ed138109Y] ‘' I9jourered ay3 >bov0uoaoa S1 I9M0d ISION 23BISAY 373 03 Iamod 2a'M

autg °3viaAy oyl Jo oy YL (3} M Amsuerexidads zsmod oy3 2urarH 9SION UBISSNED

snid N\o.w fousnboaa g Jo 2aey 2uIS ® jo BurISISUOD §89D01d WoOpURY ® JO SO imn%ﬁm»m

juaselpy Aq pourya S[BAISIU] PAI88300NG 103 WordUNng £3:suadg AjIrIqeqoxd ayi st (e n) W
2%x2 :°n

ve 22 or 8! 9l 14| r4 (o] 8 9 14 4
T T 1] T T o “......{.....'{.......ﬂ . T T T

(0°°n)°W IVINIWIN3IX3—

7

(0*%n) 30 §,3014

5 o,
ol vy )+ SLINI

0=0 ()% 39N301INOD %6
h— Sv2'0 umouxufn 10° % 660°0 Oy
- 661° 1| umouyun 90°'% S6°1 (0*%n)0q
G9LL'C | S9ll'C sv uswol | $9L4°€ 20 % cet  Joome7

_owwh.e_wbogk 12POW AOXIOW $IN|0A -o“.o._h._.w...__oo TLITYN

elownosddy | 2P IDIH2J0RYL | 10OLBI0L | o TS e Iojuswitiadx3

0§ @an3d1g

o

i

0

ol1'o

020

0} o)

o+'0

060




‘e z9j9wrered ayj £q
pajouaq SI I9m0d 2sION a3ea12AYy 943 03 I9mod saep aurg 28eI9Ay 9Y3 Jo orRy aqlL
*(3) M AusuaQ [ea3doedg aamod 9Yyj Buta®H 9SION UeISSNED SN{J 7 \0m Aousnbax g jo
sA® M SuIS ® jo SursISUOD S§59501d WOPURY ® JO sjutod Aieuoryeis juadelpy £q pauryeQ

STBAIRJU] 2A185330NG OM] JO WMG dY3 103 WoI3dUN g A3rsua( A3iqeqoad ay3 st (e <

n)"W 3G 2andrg
kowhN =%n
e ¢ 0¢ 81 91 14 2l (o] 8 9 v 2 ]
T Y Y T T T =T wpecesses O
410
420
mm.:s:..
. 3ON30I4INOD %56 . .
S < (0°n)%n 3 (0'°n)O
' €0
o
3
!A qv+ _
0=D _ = (4)°M
— 68" | umounun % €82 (0'°n) ig
0€sSL 0€SS'L sSY UNDL | 0EGS L €0°'% (WAY] (o*°n)t3
SINIDA sHw
|9PON AONIDW SaN|DA et sanjop
j02138309Yy | ' EIT T TFUTE. S
aiowixoiddy S3N[OA [O31484084 ) { 1091j9100Y ] 1DOIS1IDIS %G6 tojuswiiadxy




J—

-113-

1.0
|
P W, (f)= 0a:0
(]
° I+ ( _;_ )|4
0.8} ¢ o
L e -
° [ ]
o . .
o6} ° .
® o [ ]
° [}
.
L Y °
. o4t , .
. .
. ° ../mo( ' , u°)
[ ]
0.2F o ../mo(OnUo) ..
° %
¢ % .'o.
* .'o... .'o...
o d A 1.....]‘.000Q.OodooOQ:::&"....OJ
o) 2 4 6 8 10 2 14
ugr2rfyr
Figure 53 m_(n,u ) is the Probability that a Given

Infervaf u_ Contains Exactly n Stationary
Points of a Random Process Consisting

of a Sine Wave of Frequency f /2 Plus
Gaussian Noise Having the PoWer Spectral
Density W _(f). The Ratio of the Average
Sine Wave“Power to the Average Noise
Power is Denoted by the Parameter a.
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Figure 56 m_(n,u ) is the Probability That a Given

Interval u Contains Exactly n Stationary
Points of 8 Random Process Consisting

of a Sine Wave of Frequency { /2 Plus
Gaussian Noise Having the Power Spectral
Density W _(f). The Ratio of the Average
Sine Wave“Power to the Average Noise
Power is Denoted by the Parameter a.
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Figure 60 m_(n,u ) is the Probability that a Given

Infervafu_ Contains Exactly n Stationary
Points of a Random Process Consisting of

a Sine Wave of Frequency fo/Z Plus Gauss-
ian Noise Having the Power Spectral Density
w o(f). The Ratio of the Average Sine Wave
Power to the Average Noise Power is Denoted
by the Parameter a.
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Figure 64 m_(n,u_)is the Probability that a Given

Infervaf u_ Contains Exactly n Stationary
Points of a Random Process Consisting

of a Sine Wave of Frequency fo/Z Plus
Gaussian Noise Having the Power Spectral
Density W_(f). The Ratio of the Average
Sine WavePower to the Average Noise
Power is Denoted by the Parameter a.
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conditional probability that a stationary point of £{u, a) occurs
between u + u and u + u, + du, given a stationary point of £{u, a)

at time u. In accordance with Equation (99), U:(uo, a)-Q:(uO, a)
serve as approximations to the initial behavior of M1(u0. a) for
small "a" and are presented in Figures 51, 55, 59, and 63. Notice
that U:(uo, a.)duo is the exact conditional probability that a stationary
point of ﬁ*(u.a) occurs between u | uj and u + u, + du, given a
stationary point of g*(u, a) at time u.

Figures 51, 55, 59, and 63 also compare the convolution
of Mo(uo. a) with itself, Mo(uo,a) % Mo(uo. a), and Mi(“O' a)
fora=0, .2, 1, 4. These comparisons serve to demonstrate
that two successive intervals defined by the adjacent stationary
points of £{u,a) are statistically dependent.

The normalized autocorrelation function r'(uo, a), see
Appendix, for the infinitely clipped process n{u, a) can be computed
by applying the transformation associated with the ideal differentiator
operator to the general result given by Davenport and Middleton.

Figur'e'62 compares the experimental Mo(uo. 4) with a first
portion of _r_._(;_o—,_ai Co(uo, 4) in accordance with Equation (105).
The comparison is satisfactory.

Figur'e' 63 compares the experimental Mi(“O' 4) with a second
portion of :!-gl—(lf—)- Co(uo, 4) in accordance with Equation (105).

Again, the comparison is satisfactory.
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IX. STATISTICAL DEPENDENCE OF ZERO-CROSSING

INTERVALS

'The recent work of Longuet-Higgins (8) leads one to the
following important theorem.

Theorem: If £(t) is a Gaussian process having a finite
expected number of zeros per unit time, then the sum of (m+1)
successive zero-crossing intervals of £(t) and the sum of the
next (n+1) successive zero-crossing intervals £(t) are statiatically
dependent for all nonnegative integral m,n.

Proof:

For Gaussian processes having power spectral densities
with asymptotic behavior g4 (the singular case), Longuet-Higgins
showed that P!('r). the probability density function for the sum of
(¢ + 1) successive zero-crossing intervals, tends to a positive

value as r =+ 0. Accordingly,

T
lim | P_()P (r-£)dt = 0

lim Pm+n+1(7)# lim Pm('r)*Pn('r)E
T =0 T-+0

T-0
(108)

This completes the proof of the theorem for the singular case.
For Gaussian processes having power spectral densities
with asymptotic behavior other than f.4 (the regular case), Longuet-

Higgins showed that

7 (mi2)(m+3)-2
Pm('r) =0 (r as 7+ 0 . (109)
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Hence, as v - 0

;— (mint+3)(m+n+4)-2

Pnun-H(T) =0 (r ) (110)

and 1 1
5 {(n+2){n13)+ > {m+2){(m+13)-3
P (r)*P (r)=0(r !

(111)

Suppose Equations (110)and{111) were equal for some nonnegative

integral m,n. Then,

1(m+n+3)(m+n+4)-2 = 1(n+2)(n+3)+ 1(m+2)(m+3)—3
Zz 2z 2z (112)
and,

mn+m+n+i1=0 . {113)

Equation (113) is clearly false for all nonnegative integral m,n.

Accordingly, ast - 0

P ins TP (1) *P (1) . (114)
This completes the proof of the theorem. For m =n = 0, the
content of the theorem was given by Palmer (11) and McFadden
(28).

For certain Gaussian processes, the convolutions shown in
Figures 19, 27, 31, 35, and 51 verify the truth of the theorem
form=n=0.

In order to observe the statistical dependence between the ith
and (i+n)th zero-crossing intervals of a random process, two of
the experimental systems described in Section IIA were used to

display 5000 random samples of the ith and (i+n)th zero-crossing

intervals on an oscilloscope. The skipping discussed in Section
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IIA was set at 11 or 12 each with probability% . The resulting
intensity pattern on the oscilloscope represents an approximation to
the joint probability density of these intervals. If the intensity
pattern corresponding ton - oo 18 similar to the intensity pattern
corresponding fo n = n,, then one can conclude that the ith and
(i+n1)th zero-crossing intervals of a finite memory process are
practically independent.

For a Gaussian process having power spectral density W3(f),
Figure 66 illustrates the statistical dependence between the ith
and (i+n)th zero-crossing intervals of the process for n = 1, 2, 3, 4,
and ®. n = o represents a condition such that the (we zero-
croesing intervals are separated by approximately 71 average
zero-crossing intervals. This condition was convenient experimentally
and corresponds to a one second time separation between the
zero-crossing intervals. Notice the symmetry of the intensity
patterns about the straight line passing through the origin with
a slope of 45°. This symmetry results from the fact that the
joint probability density of the intervals is invariant under a time
reversal of the random process.

The conditional mean of the (i+n)th zero-crossing interval
given the ith zero-crossing interval is found from Figure 66 by

considering narrow vertical strips of the intensity patterns and
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1234856
Us

n=4

0123456 3
u; - u’
n=2 n=0a
Figure 66: Each Intensity Pattern Represents an

Approximation to the Joint Probability
Density of the ith and (i+n)th Zero-"
Crossing Intervals of a Gaussian Process
Having Power Spectral Density W3(f).



-132-

determining the center of gravity for each strip when unit
intensity is assigned unit mass. A line joining these points

is called a regression curve. By using the principle of least
squares one can determine the best fitting straight line to the
regression curve. The slope of this best fitting straight line
represents the correlation coefficient Pn- From Figure 66

we see that when n =z 3 the regression curve is approximately a
line parallel to the axis of abscissas, and the conditional mean
value is approximately equal to the mean value of the zero-
crossing intervale. Thus whenn 2 3, Pn £ 0 or the zero-
crossing intervals are approximately uncorrelated.

By comparing the intensity pattern for n = o to the others
we see that when n = 4 the statistical dependence practically
vanishes. However, when we compare the intensity pattern
for n = oo to that corresponding to n = 1 we see significant
dependence. This dependence is in agreement with the theorem
of this section. These observations may be useful to guide the
development of models aimed at developing a suitable theory
of the zero-crossing intervals of Gauseian processes. For
example, we see immediately that a theory based on the
independence of successive zero-crossing intervals is destined

to be inadequate.
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Similar photographs were made for all of the other random
processes considered in this report. For the Gaussian process
having.the power spectral density W4(f). the correlation
coefficient p  is non-zero when n < 4, and the ith and (i+n th zero-
crossing intervals are statistically dependent whenn < 4. For
all of the other random processes, the correlation coefficient Pn
practically vanishes when n 2 3, and the statistical dependence
between the ith and (i+n)th zero-crossing intervals practically

vanishes when n 2 4.
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X. APPLICATIONS

The sampling technique for generating Gaussian noise which
was described in Section IIIB is one application resulting from this
study of the zero-crossing intervals. Another application concerns
an integral technique for measuring pulse duration and has been
reported in the literature (36).

In certain countermeasure applications of the zero-crossing
phenomenon one requires a modulating noise waveform having
an “optimum™" Po('r), the probability denaity function for
successive zero-crossing intervals. Usually one asks that a
certain mean, Eo('r), and a certain standard deviation, o o' be
associated with the Po('r). The other required properties of
Po('r) for "optimum?" conditions are somewhat vague. Here we
shall give a few results concerning the "optimum™® Po('r).

A. THE MOST RANDOM DISTRIBUTION OF

SUCCESSIVE ZERO-CROSSING INTERVALS

Consider a sequence of successive zero-crossing
intervals {Ti} generated by a sample function of an ergodic random
process having a finite expected number of zeros per unit time.
Let each of the r; have a common probability density PO(T). and
let the n dimensional joint probability deneity for the
sequence of intervals {-ri} be denoted by Plr,,7,,7,...7 ). In

n
order to determine the most random distribution of successive
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zero-crossing intervals, we adopt the criterion that the relative

entropy per zerou-crossing interval, H', given by
o0 oo

1
H'= - lim -!-1.[' . ‘f . P(Ti'TZ""Tn)‘nP(TPTZ' ...-rn)d'r1...d'rn

(115)
is a measure of the randomness. By a well-known

principle from information theory, the maximum of H! occurs
when the sequence of successive zero-crossing intervals, {Ti}’ are

statistically independent. That is when

]

P(-ri. Tore- .'rn) P‘;('r) for all n (116)

Accordingly, in order to maximize H!' we need only maximize

the relative entropy, H, given by

[0 0]
H=- | . P () tn P (r) dr . 117)
Liet the constraints be:
a .
[ P (r)dr =1 (118)
[o] .
(o o]
[ TRlr)dr = E () (119)
and °
a0
[ P mdr=E (%) . (120)
(o]

By applying the calculus of variations we find that the maximum

relative entropy, H, results when:



o e« s

2, L T I

-136-

1 . (121)

PO(T) ==
DVZr olp)

where
E () =m +\D

E (r%) = m® + ADm + D

)
W
e

-xZ/Z
e

$(x) =

NI»
=

X

1
G = —
b V2 'r-cn

2
oY /2 dy

Given Eo('r) and EO(TZ) one can determine m and D and hence

P (1) by using the tables reported by K. Pearson (37).

Accordingly, for a given mean, Eo('r), and a given standard

deviation, g, = [EO(TZ) - E(z)('r)] 1/2. the most random distribution
of successuve zZero-crossing intervals is represented by the
truncated Gaussian probability density function shown in Figure 67
and by Equation (116). Since successive zero-crossing intervals
must be statistically independent in order to yield the maximum
relative entropy per zero-crossing interval, the theorem of
Section IX implies that a Gaussian process or an infinitely clipped
Gaussian process can not generate the most random distribution

of successive zero-crossing intervals. Moreover, for Gaussian
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e (r)

o

3 i o — C— G C— T G — — —————

Figure 67 The Truncated Gaussian Probability
Density, P (1), Represents the Most
Random Distribution of Successive
Zero-Crossing Intervals Having a
Given Mean and a Given Standard
Deviation.



-138-

processes of finite memonry, PO('r) for large T must have an

asymptotic exponential (5, 13, 38, 41) behavior such as:
Pr) ~ & °7 . (122)

Physically, this means that the random process havinga P _(7)
given by Equation (121) cannot be a Gaussian process or an
infinitely clipped Gaussian process. That is, one cannot obtain
a random process having a P_(7) given by Equation (121) by the
familiar technique of spectrally shaping "white® Gaussian noise
with a linear filter.

It is interesting to note that if the constraints are given by
Equations (118) and (119) only, then the maximum entropy H

occurs when

T
Po(‘r)z-E-im e BT (123)

The Gaussian process having power spectral de nsity Wi(f)
generates a Po('r) that approximates an exponential density of the form
given by Equation (123) as is seen in Figul“e 18. Furthermore,
successive zero-crossing intervals of this Gaussian process
are approximately independent as is seen in Figure 19.
B. TECHNIQUE FOR ESTIMATING THE ASYMPTOTIC

EXPONENTIAL BEHAVIOR OF Po('r)

Here we describe a technique for estimating the a
in Equation (122).Lewis (39) and McFadden (32) showed that:

EO(72)=2EO(T) [ % po,r)ar . (124)
(o]
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If Po(T) is asymptotically exponential then p(0,r) and Z{1,r) are .
also asymptotically exponential as is seen from Equations 39 and
41. Hence, in order to determine a in Equation (122) we detefmine
a "reasonable™ exponential to tie on to the measured p(0, 7) such
that Equation (124) is satisfied for measured Eo('rz) and theoretical
E (r). Semi-log plots of P _(r), p(0,7) and Z(1, 7) are useful for
determining where to tie on the exponential. However, the point

of "ie on" is still somewhat arbitrary. Accordingly, we end up
with at most rough estimates of a. Using normalized time, some
rough estimates of a, associated with the asymptotic exponential

behavior:

“%nYn
Po(un) ~ @ (125)

are given below.

For tie on point at u, = 8, a, = 0.28
For tie on point at u, = 12, a, = 0.11
For tie on point at u, = 4, a, = 0.47 .
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XI. CONCLUSIONS

The resultes of this study of the zero-crossing intervals of
random processes should prove useful for guiding the development
of some new techniques which are useful in both science and
technology.

The sampling technique for generating Gaussian noise is
perhaps the simplest technique available for generating such noise.

The integral technique for measuring pulse duration should
be especially useful for airborne or space instrumentation applications.

At present none of the probabilities or probability densities
presented in this report can be derived explicitly by analytical methods.

The probability density Po('r) for the case of Gaussian noise
having a power spectral density W, (f) is not exactly -11; e'T/“.

The hypothesis that successive gero-crossing intervals of
Gaussian processes from a wide sense Markov chain is false for
some Gaussian processes.

The experimental initial values of Po(un) and P 1(un) for
n = 1, 3 obtained by extrapolation agree satisfactorily with the
approximate theoretical initial values.

The results of this study should prove useful for guiding the
development of models aimed at developing a suitable theory for the
zero-crossing intervals of certain random processes. In general
the models must not assume that successive zero-crossing

intervals of random processes are statistically independent.
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For the Gaussian process having the power spectral density
W4(f), the correlation coefficient Pn is nonzero when n < 4, and
the ith and (i#n)th zero-crossing intervals are statistically
dependent when n < 4. For all of the other random processes,
the correlation coefficient Py practically vanishes whenn 2 3,
and the statistical dependence between the ith and (i+n)th zero-

crossing intervals practically vanishes when n 2 4,
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XII. APPENDIX
For a Gaussian process having a normalized autocorrelation
function p(r), the conditional probability, U{r) dr, that a zero

occurs betweent + 7, t + T + dr given a zero at t is given by:

Ul{r)Mdr = %r_ [-p"(O)] -% [ —L%-%][i - pz('r)] -13 [1+th.n'1H ]
(126)
.
H=M;, [Mgz - Mz, ]'z

where

w -1 w
~ 7 < tan Hsz

M,,=-p"(0) [1 - p?(r) ] -[p-(T)]z

Myy = otr) [1- 0200 |+t [0 ]°

For a Gaussian process having a normalized autocorrelation
function p(r), the conditional probability, Q(r) dr, that a downward
zero-crossing occurs betweent + 7, t + 7 + dr given an upward

zero-crossing at time t is given by:

1 3
- M -
Qtr) ér = &2 [ p"(m] z [—,?,3] [1 : p"m] ’[uucot“(-m]
‘ (127)
.\_w

where

0< cot 1 (-H) < =
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The normalized autocorrelation function, r(uo, a), for the

infinitely clipped process £(u, a), defined by Equation (82), is

given by:
pot hi. n ® mu
r(uo, a)=-4 z - po(uo)-B E hm, 0 Coa—-z—- +
n =1 m=1
odd n oddm
a—? (?' hff\, n n muO
}. L ny po(uo)Con 2z
n=1 m=1 .
odd (m+n)
(128)
where
2 m+n .
hz - 1 Znam 1F1 (—z——.m+1.-a\
mn o (2m! 2 1Hz[z - (m+n) ]
———
1I-"1 = confluent hypergeometric function

I' = gamma function

a = signal-to-noise power ratio.

The normalized autocorrelation function, r‘(uo, a), for the
infinitely clipped process n(u, a) defined by Equation (106), is

given by:
n

o 2 fo s}
h "
r (u,a)= -4 z % po(uo) -8 Z hZ Cos i +
st o' " n! " m, o P4
p'2(0)
=t m=1
odd n odd m
@ 00 2 n
hm,n p'o'(uo) mu
2 Z T | p™OT Cos ——
n=1ms=1 o

odd {(m+n) (129)
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where
2 m+n
—y—im+1;-
hz - 1 Zn(ba)m 1Fi( —m+ ba)
m.n ] z f
(2m!) 2 [Z-(m-m)]
r | ——
3n
Sinn
b=

4sm-{1"
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